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Explicit construction of linear sized tolerant networks
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Abstract

For every ε > 0 and every integer m > 0, we construct explicitly graphs with O(m/ε) vertices and maximum degree O(1/ε2),
such that after removing any (1 − ε) portion of their vertices or edges, the remaining graph still contains a path of length m. This
settles a problem of Rosenberg, which was motivated by the study of fault tolerant linear arrays.
© 1988 Published by Elsevier B.V.

1. Introduction

What is the minimum possible number of vertices and edges of a graph G, such that even after removing all but ε
portion of its vertices or edges, the remaining graph still contains a path of length m? This problem arises naturally
in the study of fault tolerant linear arrays, (see [18]). The vertices of G represent processing elements and its edges
correspond to communication links between these processors. If p, 0 < p < 1 is the failure rate of the processors, it
is desirable that after deleting any p portion of the vertices of G, the remaining part still contains a (simple) path (=
linear array) of length m. Similarly, if �, 0 < � < 1 denotes the failure rate of the communication links, it is required
that after deleting any � portion of the edges of G the remaining part still contains a relatively long path. The objective
is to construct such graphs G with a small number of vertices and edges, since these will give rise to efficient networks.
Some variants of this problem are discussed in [14,9,19]. In this note we prove the following result.

Theorem 1.1. For every ε > 0 and every integer m�1 there is a graph G, which can be explicitly constructed, with
O(m/ε) vertices and maximum degree O(1/ε2), such that even after deleting all but ε-portion of its vertices or all but
ε-portion of its edges, the remaining graph still contains a path of length m.

This settles the problem raised by Rosenberg [18], and is also related to the study of size Ramsey numbers (see
[10,4]). We note that the edge version of the above theorem for ε = 1

2 was proved by Beck [4], and his proof can be
modified to give the general case, without explicit construction. Our main contribution here is to obtain an explicit
construction by combining the arguments of Beck [4] with some of the eigenvalues technique of [1–3] and the recent
construction of expanders given by Lubotzky et al. [16].
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2. The proof of the main result

For a graph H = (V , E) and S ⊆ V , let NH (S) denote the set of all neighbors in H of vertices of S. Pósa [17] proved
the following useful lemma which provides a relation between the expanding properties of a graph and the size of the
longest path it contains. (See also [15] for a simpler proof.)

Lemma 2.1. Let H = (V , E) be a nonempty graph. If |NH (S) − S|�2|S| − 1 for every vertex subset S ⊆ V of
cardinality |S|�k, then H contains a path of length 3k − 2.

The following simple lemma is an old folklore result (see, e.g. [4]):

Lemma 2.2. Any graph G on n vertices with average degree d contains an induced subgraph H such that for every
vertex-set S of H the number of edges incident to vertices in S is at least d|S|/2.

Next we need a relation between the eigenvalues of a graph G and the density of its induced subgraphs. Let A = AG

be the n by n adjacency matrix of a d-regular graph G= (V , E) on V ={1, 2, . . . , n}. Clearly d is the largest eigenvalue
of A and its eigenvector is the all 1 vector. Suppose that the absolute value of any other eigenvalue of A is at most �.
For S ⊆ V let e(S, S̄) denote the number of edges of G between vertices of S and vertices of S̄ = V − S, and let e(S)

denote the number of edges that join two vertices of S.

Lemma 2.3. In the above notation, for every subset S ⊆ V of cardinality |S| = �n

|e(S) − 1
2 d�2n|� 1

2��(1 − �) · n. (2.1)

We note that the term 1
2d�2n is roughly the expected number of edges in an induced subgraph of G of size � · n.

Thus, for small �, every such induced subgraph has about the same number of edges.

Proof. Define a vector f : V → R by f (i) = −1/|S| if i ∈ S and f (i) = 1/(n − |S|) if i /∈ S. Since
∑n

i=1 f (i) = 0,
i.e. f if orthogonal to the eigenvector of the largest eigenvalue of A, we conclude that |(Af , f )|��(f, f ), where ( , ) is
the usual scalar product. One can easily check that

(Af , f ) = 2
∑
ij∈E

f (i) · f (j) = d

n∑
i=1

f 2(i) −
∑
ij∈E

(f (i) − f (j))2.

For the specific f defined above

n∑
i=1

f 2(i) = 1

|S| + 1

n − |S| and
∑
ij∈E

(f (i) − f (j))2 = e(S, S̄)

(
1

|S| + 1

n − |S|
)2

.

Thus ∣∣∣∣∣e(S, S̄)

(
1

|S| + 1

n − |S|
)2

− d

(
1

|S| + 1

n − |S|
)∣∣∣∣∣ ��

(
1

|S| + 1

n − |S|
)

,

which implies, by substituting |S| = �n, that

|e(S, S̄) − d�(1 − �)n|���(1 − �) · n. (2.2)

Since G is a d-regular graph,

2e(S) + e(S, S̄) = d|S| = d�n,

i.e.

e(S) = 1
2 d�n 1

2 e(S, S̄).

This and inequality (2.2) imply inequality (2.1). This completes the proof. �
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Proof of Theorem 1.1. Lubotzky et al. [16] showed that if p and q are primes congruent to 1 mod 4, with p a quadratic
non-residue mod q, then there is an explicitly constructed d = p + 1 regular graph G with n = q(q2 − 1)/2 vertices,
such that the absolute value of each of its eigenvalues but the first is at most � = 2

√
d − 1. We next show that for

properly chosen p and q, G satisfies the assertion of Theorem 1.1. We first consider the case of deleting vertices.
Suppose we delete all but a set V of ε · n vertices of G. By Lemma 2.3 the induced subgraph of G on V contains at
least 1

2dε2n − 1
2�ε(1 − ε)n edges, i.e. has average degree at least εd − �(1 − ε). By Lemma 2.2 this graph contains

an induced subgraph H in which every vertex set of cardinality x hits at least 1
2 (εd − �(1 − ε)) · x edges. Let S be an

arbitrary vertex subset of H, of cardinality x = �n��n, where � < 1
9ε will be chosen later. We next show that for a

properly chosen d:

|NH (S) − S| > 2|S|. (2.3)

Indeed, otherwise, if T =NH (S)−S, then |S ∪T |�3x and there are in H (and hence in G) at least 1
2 (εd −�(1−ε)�) ·n

edges joining vertices of S ∪ T . However, by Lemma 2.3

e(S ∪ T )� 1
2d9�2n + 1

2� · 3�(1 − 3�) · n

and therefore the inequality

εd − �(1 − ε)�9�d + 3�(1 − 3�)

must hold. Since ��2
√

d − 1 this implies

d � 2
√

d − 1(4 − ε − 9�)

(ε − 9�)
. (2.4)

Hence if we choose d such that

d > 4 ·
(

4 − ε − 9�

ε − 9�

)2

(2.5)

then (2.4) is violated for all ��� and hence (2.3) holds. By Lemma 2.1 we conclude that H contains a path of length
3��n� − 2. Therefore if we choose e.g. � = 1

18ε and we choose the primes p and q in the construction of G such that

d = p + 1 > 4

(
8

ε

)2

and n = q(q2 − 1)

2
� 6

ε
(m + 5) (2.6)

we conclude that even if we delete all but ε · n vertices of G, the remaining part still contains a path of length m.
This completes the proof for the case of deleting vertices. The case of deleting edges is somewhat simpler. Indeed,
if we delete all but an ε-portion of the edges we are left with a graph of average degree ε · d. This graph contains,
by Lemma 2.2, an induced subgraph H in which any set of x vertices hits at least εd 1

2x edges. Hence if S is any

vertex subset of cardinality �n��n of H, where � < 1
9ε, and if d satisfies d > 4

(
3−9�
ε−9�

)2
one can check, as before, that

|NH (S) − S| > 2|S|. Thus, by Lemma 2.1, H contains a path of length 3��n� − 2. It is easy to check that the previous
choice of p, q given in (2.6) suffices to guarantee a path of length m in this case, as well. (In fact, here a slightly smaller
d is enough.) By the standard results about the distribution of primes (see e.g. [8]), there is a choice for p and q for
which (2.6), as well as the estimates n = O(m/ε) and d = O(1/ε2) hold. This completes the proof. �

3. Related problems

3.1. Size Ramsey numbers

The size Ramsey number �s(G) of a graph G is the least number of edges in a graph H with the property that any
two coloring of the edges of H contains a monochromatic copy of G. Size Ramsey numbers were first considered in
[10], and several results on them can be found also in [6,12,13]. Beck’s result [4], mentioned in Section 1, resolves the
problem raised by Erdös of estimating the size Ramsey numbers for paths. Beck’s construction, however, is probabilistic.
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Typically, explicit constructions are much more difficult to find than random ones for Ramsey type problems (see [13]).
Our construction supplies an explicit example showing that the size Ramsey number for paths is linear.

3.2. Fault tolerant graphs for bounded degree trees

A natural extension of Theorem 1.1. is obtained by replacing the requirement for paths of length m by a requirement
for all trees of maximum degree k and size m. Beck [4] proved, without an explicit construction, that there exists a graph
G with O(k · m · (log m)12) edges, such that any set of half of its edges contains every tree of size m and maximum
degree k. Very recently, Friedman and Pippenger [11] gave, for every ε > 0 and m, k�2, an explicit construction of a
graph G with O(mk2/ε) vertices and maximum degree O(k2/ε2) such that any set of an ε-portion of its edges contains
every tree of size m and maximum degree k. Their construction is based on an interesting generalization, of Pósa’s
theorem (Lemma 2.1) from paths to trees. Some other related results can be found in [5,7].
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